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Abstract—Signature-based network intrusion detection sys-
tems (NIDS) are one of the most popular tools used to detect and
stop malicious attacks or unwanted actions. However, as network
attacks become more sophisticated and diversified, the accuracy
of signature-based NIDS that rely only on live network traffic
decreases significantly. Recent research efforts have proposed
to archive the raw contents of the network traffic stream to
disk, in order to enable later inspection of activity that becomes
interesting only in retrospect. Unfortunately, the ever increasing
network traffic and capacity make the collection and archiving
of multi-gigabit network streams very challenging.

In this paper, we review different mechanisms and techniques
to efficiently store the captured network traffic to disk. We also
propose an architecture that will integrate all these mechanisms
into a single middleware platform that will be used by network
monitoring applications in order to enhance their functionalities.
Our approach will offer the ability to analyze and correlate
multiple security activities, as well as, in terms of forensic
analysis, to perform post-mortem incident analysis in order to
asses the given damage.

I. INTRODUCTION

Signature-based Network Intrusion Detection System

(NIDS) is one of the most popular tools for detecting and

preventing malicious network attacks and the presence of such

a tool is a cornerstone in any modern security architecture.

Typically, a NIDS captures the network traffic at ingress

and egress points in the network, and performs the required

analysis and processing. In order to detect any malicious

activity, a set of pre-defined signatures is matched against the

live captured traffic.

To cope with high traffic volumes, several works have been

proposed for improving the performance of Network Intrusion

Detection Systems (NIDSs), either by accelerating the packet

processing throughput [1]–[5], or by balancing detection accu-

racy and resource requirements [6], [7]. However, as network

attacks become more sophisticated and diversified, the accu-

racy of signature-based NIDS that rely only on live network

traffic decreases significantly [8], [9]. Recent research efforts

have proposed to archive the raw contents of the network

traffic stream to disk, in order to enable later inspection of

activity that becomes interesting only in retrospect [9]. As

a result, current live network stream can be combined with

previously archived packets, in order to enrich the accuracy

of signature-based NIDS.

Unfortunately, the challenge of collecting, analyzing and fi-

nally archiving a multi-gigabit stream is significant. Especially

for 10 GbE networks, where packet arrivals can be as short

as 1.25 microseconds (for a 1.5KB MTU), storing full packet

traces even for a couple of hours can result to thousands of

gigabytes of data. In order to reduce the space requirements,

previous works use a cutoff limit, typically ranged between

10-20 KB per connection [9]. However, an attacker who has

knowledge of the cutoff value can easily evade detection by

transmitting data (or forcing the host server to send data)

until the cutoff value has passed. To make matters worse,

there may be cases in which a single network connection may

exchange large amounts of data passing the cutoff value. For

instance, web proxies that maintain persistent connections with

the back-end servers will always pass the cutoff value, after

serving a few clients.

In this paper, we examine different mechanisms and tech-

niques that can be used to store the captured network traffic

to disk. In particular, we propose utilizing several approaches

that have been traditionally used to minimize the stored size of

large volumes of data, such as compression and deduplication.

We also propose utilizing more domain-specific techniques,

such as aggregation and sampling of network packet traces.

Our aim is to evaluate the different mechanisms that can be

used to reduce the size of the required data, characterize the

sustained performance, discuss the disadvantages, and show

the corresponding trade-offs. All these mechanisms can be

combined into a single framework that can be used as a

middleware by network monitoring applications in order to

enhance their functionalities.

The rest of the paper is organized as follows. In Section II

we describe the notion of the multi-step attacks and the

advanced persistent threats. In Section III we present the

design of our system in detail, when in Section IV we discuss

how we control the ever-increasing size of the stored historical

traffic. In Section VII we compare MAD to previous works in

the field and finally, in Section VIII we present some future

directions and conclusions.

II. MULTI-STEP ATTACKS

Automated attacks, such as worms and viruses, are easy

to detect using signature-based NIDS and virus scanning

solutions. Besides automated attacks, there is a constant
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interest for detecting more sophisticated malicious actions

that follow long-term steps of actions. These targeted attacks

consist of multiple correlated steps in order to reach a specific

target and combine several attack methodologies (e.g. drive-by

downloads, SQL injections, malware, spyware, phishing, spam

emails etc.) and tools (e.g. zero-day vulnerability exploits,

viruses, worms, and rootkits). Unlike the traditional network

attacks, which consist of an automated malicious script, in

these Multi-Step Attacks usually exists a level of coordinated

human involvement. These types of attacks are usually de-

signed for political or economic espionage or sabotage, and are

fired against governments, organizations, highly competitive

companies, political activists etc.. Below, we describe the

main characteristics of the most popular multi-step attack, the

Advanced Persistent Threat (APT), we discuss its phases, and

show a typical attack example.

A. Main Characteristics of APTs

Persistence. The main characteristic of APTs is their multi-

phase nature. Critical information, as the exact location of

the data, deployed security controls and the existence of

vulnerabilities are not known a priori to the attacker. As a

consequence, in order to steal valuable information, the at-

tacker must first identify several vulnerabilities and overcome

various security measures to finally gain access to privileged

hosts and extract data from the network. Thus, detection of

such threats requires a different approach, not constrained by

the observation of a single event.

Evasiveness. APTs are usually designed to evade the com-

mon security mechanisms deployed by most organizations.

The attackers are able to bypass the deployed firewalls and

gain access to hosts by delivering threats through commonly

used protocols (like HTTP, POP, SMTP, etc.). In order to be

stealthy, the intruders usually need to create and install custom

malwares on privileged hosts to avoid being identified by anti-

virus products. In addition, in order for the exfiltrated data to

be sent out of the target network while avoiding firewalls,

encryption techniques may be used.

Complexity. An APT is based on a complex combination

of attack vectors targeting as many vulnerabilities as possible

in the targeted organization, including social engineering,

exploits sent through email, remote administration software,

Remote Access Trojans (RATs), or other custom malicious

software. As a result, it is very difficult for a single security

measure to provide defense against all these different vectors.

It is easily anticipated thus, that a multi-layer approach must

be used as a countermeasure to this complex mix of attacks.

B. The APT Phases

An APT contains a number of phases that usually span over

a large period of time. What follows is a brief description of

such steps.

• Step 1: Host Reconnaissance. First, the attacker collects

useful information by scanning and studying the targeted

victim. This way, she makes herself familiar with the

Phishing site 
deployment,

Malicious payload 
distribution

11/3/2015

20/4/2015

15/6/20151

4/3/2015

Vulnerability 
assessment,

Acquisition of remote 
access

2

     Network scanning,
Infection spread

3

Data capture,
Data exfiltration

4

Fig. 1: A simple multi-step attack example. To remain stealthy,

the adversary has the different attack steps spread in the

timeline.

target system and conducts a full host reconnaissance to

assess its security vulnerabilities.

• Step 2: Persistent Incursion. In the second phase the

intruder launches a “low-and-slow” attack to avoid de-

tection aiming to breach the target. More specifically, in

this phase the intruder takes advantage of possible host’s

vulnerabilities detected in the above preliminary step. To

achieve this, she uses several methods like execution of

SQL injection, exploitation of zero-day vulnerabilities,

usage of targeted malware, or even a mix of the above

methods. If the target shows resistance, the attacker

usually changes strategy and deploys a new different

type of attack against the host until she finally cracks

its defenses.

• Step 3: Control, Discover, Update, Spread. Once the

attacker has successfully compromised a host, then she

tries to map the network topology and the organization

defenses from the inside. In essence, as a second objec-

tive, she aims to spread the infection and take control of

a larger part of the organization’s network. Hence, she

scans for unprotected data and networks as well as vul-

nerabilities, exposed credentials, and paths to additional

nearby resources. Since the scanning process results may

contain hosts with several different hardware vendors and

software versions, the attacker probably needs to update

her tool-chest. To achieve this, she usually downloads

additional tools to the compromised host before starting

to spread the infection.

• Step 4: Capture and Exfiltration. The final step of an

APT contains the extraction of valuable data off the target

network and the total control of a number of hosts. In

this phase the intruder may secretly install rootkits on key

systems and access points in order to be able to eavesdrop

and capture data as they flow through the organization

network. Finally, the attacker sends the harvested data to

a node outside the organization network. The data travel

to the node either in the clear or wrapped in encrypted

packets or zipped files with password protection. In that

node the collected data are studied and analyzed to extract

secrets and assess their value.

At this point it is worth mentioning that the intruder aims

to remain inside the organization and harvest information over
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a long-term. As a consequence, all of her actions are designed

to avoid detection at all cost and make the analysis of the

malware as difficult as it gets1.

C. Example of an APT

Figure 1 shows a simple APT attack example. First, the

attacker sets up a phishing site that includes a zero-day payload

(for example: CVE-2011-0609 - Adobe Flash Player v10

vulnerability2) and distributes by spoofed emails his malicious

link to a handful of employees at the targeted organization

(step 1). After a week a user is finally deceived, she downloads

the vulnerable plug-in and installs it to her workstation. Then

the attacker studies the remote host that installed the plug-

in in order to collect information about it and make himself

familiar with its existing defenses. After that the attacker is

able to exploit the vulnerabilities he found and gain remote

access to the victim’s host (step 2).

As soon as it gains control of the remote host, the intruder

starts searching it for unprotected data and credentials. Besides

local data harvesting, he also scans the nearby hosts to map the

organization’s internal network topology and identify strategic

assets or employees with higher level privileges. This way,

he locates the next target and once again conducts a full host

reconnaissance to assess the victim’s vulnerabilities aiming to

spread the infection (step 3). In this step, the intruder may

need to update his tool-chest by downloading malware and

tools that will help him with the exploitation of the new host’s

vulnerabilities.

As soon as the intruder has successfully infected a number

of workstations, he finally owns the administration keys for

the organization’s main data storage server. At this point, he

constructs a stealth channel via encrypted files over FTP to

transfer the data from the server to a host he controls out

of the target’s network (step 4). Finally, in the external host

the valuable, exfiltrated data gets analyzed, and the intruder

exploits them in every possible way (by blackmailing, selling

secrets business competitors etc.).

III. THE MAD SYSTEM DESIGN

In this section, we describe the proposed design of our

system, called (MAD). MAD is a middleware platform for

archiving the retrospective traffic, as well as for performing

queries on the archived traffic. Similar to other typical network

traffic analysis systems, the architecture can be broken into

the following main subsystems: packet capturing, indexing,

and storage management. These subsystems are implemented

in MAD through four components shown in Figure 2 and

described below in more detail.

Packet Capturer: The packet capturing component is re-

sponsible for tapping the network link, monitor the traffic and

filter the received packets. It primarily consists of a thread that

uses a network packet capturing library, such as the libpcap,

in order to access the full packets of the monitored traffic. All

1There were incidents in the past like Hydraq Trojan [10] that the attackers
used obfuscation techniques to keep themselves hidden from the victim.

2http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0609
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Fig. 2: The MADś system overview. It consists of four main

components: Packet capturer, Query engine, Size Controller

and Storage. It aims to help traditional detection systems

correlate the historical traffic with the real-time traffic in order

to successfully detect sophisticated multi-step attacks.

captured packets are passed to the upper processing layers first

— where the detection system lays (that can either an anomaly

detection system or an intrusion detection system) — and then

to the storage component where they are archived.

Query engine: As our second component, we design a

query engine, which is responsible for the communication

between the storage component and the coupled IDS. In

particular, the query engine contains a listener that responds to

every GET-request originating from the upper level detection

system. Thus, it is achieved in a three-steps procedure, first

by translating the detection system’s GET-request into the

corresponding SQL query, then by applying that SQL query to

the storage’s packet indexer and finally by sending the results

back to the detection system. As a result, the detection system,

which is configured with the appropriate rules by the network

administrator, is able to combine the historical traffic with the

direct real-time traffic that originates from the query engine
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and the packet capturer respectively.

Correlation Engine: The detection of attacks, similar to

these discussed in Section II, require correlation of both real

and historical traffic. As such, our approach will be used

alongside with a correlation engine as presented in [11] or

[12]. The Correlation Engine is an optional component able to

correlate the intruder’s attack steps by linking NIDS alerts. The

linked alerts are two alerts that the postcondition of the first is a

necessary precondition of the second and this precondition was

not satisfied before the first one. In other words, the first attack

step that corresponds to the first alert prepares the execution of

the next attack step that corresponds to the second alert. Hence,

if the NIDS raises an alert for illegal access of an attacker in a

machine that runs a vulnerable service, the Correlation Engine

by processing MAD’s output could identify that this alert is

linked with a past alert that corresponds with a remote buffer

overflow that made the way for that following illegal access.

Size Controller: The historical traces reflect the knowledge

of the detection system regarding the network actions that

happened in the past. The more knowledge MAD provides to

the detection system, the more accurate the multi-step attack

detection procedure will be. Thus, the necessity of storing

a large volume of historical traffic is apparent. Although,

since the available storage capacity is not inexhaustible, it’s

very crucial for the MAD to apply an efficient storage size

management plan. The size controller is the component that

makes the appropriate actions to achieve the highest possible

storage size reduction for the stored traces. In Section IV, we

discuss this controller’s functionality more thoroughly.

Storage: The Storage component is the MAD’s core com-

ponent and consists of three blocks as shown in Figure 3.

The first block named Headers Database is responsible of the

indexing procedure. In this procedure we index the packets

by storing the fields of their header in a relational database.

Besides packet’s headers in the database we keep a pointer to

its full payload stored in the second block as well. The second

block consists of a RAID-0 volume where packets payloads

are stored in a serialized form, grouped by flow. The last

block named Dispatcher receives the monitored raw packets

from Packet Capturer and after separating the headers from the

payload, it stores them in the appropriate block. In addition

Dispatcher is responsible of responding to the GET requests

of the query engine. To conclude, the Storage component

is responsible to store and more important maintain a large

volume of historical traces in order to respond fast to search

queries regarding this volume.

IV. STORAGE SIZE MANAGEMENT

As stated earlier, the more “knowledge” MAD maintains,

the more powerful the Correlation Engine will be and as a

consequence the more accurate the multi-step attack detection

will become. By “knowledge” here we define the historical

traffic retrieved from the network. This traffic consists of

several network traces that include several events. Considering

that some of these events may constitute specific steps to a

sequence, able to end up to a multi-step targeted attack, it

is easy to anticipate that maintaining such network history

knowledge is a point of paramount significance in our system,

which results in storing large amounts of network traces.

The fact that we have to keep a large volume of data on disk

for a long time, creates the necessity of controlling the size of

our Storage component. As a consequence, in Size Controller

component we use several mechanisms to reduce the size of

data to the minimum possible. These mechanisms include

compression for storage space reduction, deduplication for

eliminating duplicate or redundant information, cutoff to the

streams that are candidate for storage, classification and finally

aggregation and sampling as discussed below.

A. Compression

Compression is the most efficient and fast method to reduce

the required size of a large volume of data. The most naive way

to succeed this would be the use of a generic data compression

approach e.g., Gzip 3. Nevertheless, such an approach lacks of

efficiency since it does not take into account the structure of

data streams during compression. Both [13] and [14] present

flow-based algorithms for trace compression that result in 25%

of the size of the original trace. Their algorithms are based on

storing compressed packet headers along with their timestamps

as flow records. Although, an IDS needs to perform frequent

database queries, the decompression of packet headers would

add an additional overhead on the response latency. In [15],

there is a study attempting to quantify the amount of informa-

tion included in various types of packet traces and the limits

of trace compression that can be achieved taking advantage of

traces’ joint information. The conclusions of this study present

the guidelines for the development of practical network trace

compression algorithms, on which we rely, in order to reduce

MAD’s storage size requirements.

B. Deduplication

Deduplication is a technique used for reducing duplicates

and redundant data, leading to better storage utilization. There

are many studies that apply deduplication techniques in order

to reduce the amount of data in large data centers with a

view to lowering energy consumption and achieving storage

space reductions [16]–[18]. These studies follow a set of

different ways to accomplish that, such as block-level or file-
level approaches. In our case, where the candidate data for

deduplication are packet traces, the level of deduplication has

to be based on the characteristics of the network packets or

flows. Packet-level elimination techniques on network links

can reduce resource utilization in ISP networks by 10-50%

as measured in [19]. By applying such techniques in MAD’s

stored traces, we are able to achieve similar storage space

savings and improve the maintenance of our historical traces.

C. The Cutoff heuristic

Another way to effectively decrease the required size of the

needed storage is to use selective packet discarding techniques,

i.e., by discarding the less important packets of a trace or a

3http://www.gzip.org/
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flow. Many systems that deal with high traffic volumes at real

time are used to apply a per-flow cutoff in order to discard the

least significant packets when they are under heavy load [9],

[20]. In [9] the authors show that due to the “heavy-tailed”

nature of Internet traffic, one can record most connections in

their entirety, yet skip the bulk of the total volume, by only

storing up to a (customizable) cutoff limit of bytes for each

connection. As a result, by employing a cutoff of 10–20 KB

per connection, it is possible to store the raw high-volume

traffic of several days, without losing the complete record for

the vast majority of the connections. Although the attacks

that our proposed system tries to detect are differentiated

from the traditional ones, as they consist of multiple steps

(flows) of separate time periods that needed to be correlated, a

cutoff would make sense in our system too. A per-flow cutoff

would also be applied in our collected historical traces, as

the interesting parts of the different flows that may constitute

a multi-step attack intuitively seem to be hidden in the first

packets of each flow. We are planning to investigate further

this assumption by performing experiments similar to this

study [21] on traces that contain multi-step threats.

D. Aggregation and Sampling

To decrease our storage requirements we also use data

aggregation and sampling techniques. Both techniques have

their limitations. For example, aggregation is effective but it

requires the traffic features of interest to be known in advance.

Similarly, sampling techniques are effective but they are based

on the selection of a representative set of packets uniformly

over the collecting data period. Many aggregation techniques,

especially on historical traces, have already been proposed and

were useful in our approach [22]–[24]. Moreover, sampling

techniques have been proposed [25]–[28], which are common

in high-end routers due to the limitations of their available

storage and processing resources. Techniques like these of

NetFlow [29], which is based on traffic rate prediction to

adjust the sampling rate properly, can be applied to our

historical traces. In addition RRDTrace [30] seems to be

another ideal candidate that could supply our system with

sampling. RRDTrace stores raw network packets in fixed-size

disk space for arbitrary long periods, while preserving the most

recent packets with many more details. Thus, summaries could

be constructed for our old historical traces that contain the first

parts of a multi-step attack, while the most recent information

that will trigger the alerts can be saved in more detail.

E. Classification

We also classify the traffic according to the content of the

packets payload it contains, in order to filter out portions of

traffic that does not need to be stored. For example, if we are

interested in detecting multi-step attacks that target specific

applications, we can discard the rest non-suspicious traffic.

This can be achieved through applying traffic classification

techniques like the ones presented in [31]–[33]. Moreover, a

recent study showed that discarding specific traffic like P2P
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Fig. 3: The Storage component. The dispatcher, in direct

communication, with the Packet capturer gets raw packets and

separates their payload and headers before storing them in two

different blocks. It is also responsible of marshaling the GET

requests of the query engine

traffic could also improve the accuracy of various anomaly

detectors [34].

F. Mixing Different Mechanisms

Finally, we offer the opportunity to combine any of the

above different mechanisms together. As a result, users can

have the benefits of many approaches, based on their needs.

For instance, it is possible to first use classification to filter-

out non-interesting traffic, and then use deduplication to store

the remaining traffic to disk. Finally, there are also several

other existing mechanisms able to further-improve the perfor-

mance of MAD, which are already presented in other existing

works [35].

V. IMPLEMENTATION

The implementation of MAD middleware will be based on

an SQL relational database for storing the incoming network

traffic. More specifically, the database is responsible of sep-

arately storing the headers and the payloads of the captured

packets, in two different tables. As soon as a packet arrives a

new row for SQL database will be created containing two

columns: (i) a file ID pointing to a locally stored random

access file and (ii) the offset in the corresponding file where

the payload is located. To achieve high throughput and avoid

packet losses, both SQL queries and payload writes will be

batched. As a result, SQL insertion queries will performed

per thousands of incoming packets.

The input of the database is passed through the Packet

Capturer component of MAD, which sniffs packets from the

network and forwards them to both Storage and Detection

system. The latter is able to combine both real time and

historical traffic performing this way an efficient retrospective
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analysis. In our prototype, as a detection system we utilize

the popular rule/policy driven and signature-based, network

intrusion detection system (NIDS) of Snort [36].

VI. DISCUSSION

Besides the main task of maintaining the required historical

traffic needed for the NIDS retrospective analysis, MADcould

also be able to further-improve the accuracy and effectiveness

of the detection system. For instance, MADwould be able to

counteract against situations of packet drops that occur when

NIDS/NIPS operate under heavy load [37], by storing the

incoming network traffic streams into the disk. In addition,

MAD would enable NIDS to perform a better packet process

scheduling by implementing prioritization. In essence, by uti-

lizing our middleware, NIDS would be able to assign priorities

to different network flows (e.g. flows originating from port 80

only). As a consequence, the CPU power would be used to

process packets from first priority flows, letting the rest be

requested from the Query Engine and processed during idle

times.

VII. RELATED WORK

The work most related to ours is “Toolkit for Intrusion Alert

Analysis” (TIAA) [12]. TIAA is a system that provides support

for interactive intrusion alerts. It utilizes a knowledge base

and a database and is comprised of three components: the

alert collection, the alert correlation, and the interactive anal-

ysis subsystem. TIAA is equipped with a correlation engine

which produces alerts, called hyper-alerts, based on previous

intrusion alerts collected by the alert collection subsystem.

TIAA also provides a graphical user interface along with a

set of interactive analysis utilities that can be applied in the

aforementioned hyper-alerts. Finally, the analysis results are

visualized and presented to the user graphically. Although

TIAA appears to be very similar to what our system provides,

our system is more generic and flexible. MAD is a middleware

that provides a generic API allowing the easy implementation

of intrusion detection systems that can take advantage of any

historical data it maintains. It also provides the user with the

ability to implement any IDS application on top of it easily;

for instance, TIAA would be an example of an application that

can be easily implemented using the MAD API.

Maier et al. present Time-Machine, a system capable of

accessing past network traffic quickly in order to perform

network analysis and security forensics [9]. Time Machine is

built on the proof-of-principle prototype that was previously

proposed in [8], increasing its performance and extending its

functionality. Time-Machine stores network traffic in the most

detailed form, that is packets, similar to our proposed archi-

tecture. Moreover, Time-Machine provides a remote interface

that allows a user to perform queries on the stored packets. In

order to reduce the amount of the stored traffic, Time-Machine

applies a cut-off to each flow to be stored (storing only the its

first N bytes). The same functionality is also supported by our

system, through the MAD API, even though we apply many

other mechanisms too, such as compression, deduplication, etc

(see Section IV).

Apart from the aforementioned approaches that appear to be

the most similar to our system, there have been several other

studies that deal with recording high-volume network traffic.

Antonelli et al. [38] provide a long-term traffic archive using

tapes. The main drawback of this system when comparing

with MAD is the lack of a real-time query engine or interface.

Nonetheless, there exist many approaches in the literature that

provide real-time queries engined to stored traffic archives.

For example, Reiss et al. [39] introduce a system that performs

declarative queries on high-bandwidth streams, as well as real-

time monitoring and comparison against past history. Gigas-

cope [40] is a stream database for network applications like

traffic analysis, intrusion detection, etc., that supports SQL-like

queries on stored streams in the spirit of our approach, but does

not provide historical archiving. Desnoyers et al. introduced

Hyperion [41] which is a novel stream archival system used to

store large amounts of data streams. The indexing is based on

Bloom filters and provides good query performance. Finally,

Cooke et al. [42] presented a framework for archiving security

data which can be transformed into flows later, along with

algorithms that can be used for their gathering and storing

needs.

VIII. CONCLUSIONS AND FUTURE WORK

As network attacks become more sophisticated and diver-

sified, the need for an accurate attack detection grows. The

accuracy of current state-of-the-art Network-based Intrusion

Detection Systems rely only on live network traffic, being this

way an adequate countermeasure against attacks that follow

long term steps of actions. In such attacks, called multi-step

attacks, the intruder launches several actions that, although are

not performed in the same time period, they are correlated and

are aiming to harm a specific target. In contrast to traditional

automated attacks, these attacks include also a coordinated

human involvement combining several attack methodologies.

In this work we presented MAD, a middleware framework

for Multi-step Attack Detection, which aims to improve the ac-

curacy of existing signature based NIDS. MAD runs between

the NIDS and the underlying network interface and supports

real-time packet capturing, as well as historical network traffic

archiving, indexing and querying. Our system is designed to

offer both real-time along with historical traffic analysis, in

order to pass the highest possible knowledge as input to the

coupled NIDS. This input along with any rules, given by the

network administrator, will allow NIDS to produce a more

accurate alert stream, able to detect multi-step attacks that

consist of a large number of steps or actions. In addition, we

presented the required mechanisms that will allow the NIDS to

efficiently perform queries to the archived traffic, and reviewed

popular mechanisms that can be used to reduce the size of

stored data.

Our future work includes the extensive evaluation of our

system both in terms of performance and effectiveness, by

measuring the produced false positive alert ratio. Finally we
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plan to make a case study by running MAD against a pool

of several known multi-step attacks and measure the detection

percentage it can achieve.
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